Preprocessing of Satellite Data for Urban Object Extraction
نویسنده
چکیده
Very high resolution (VHR) DSMs (digital surface models) derived from stereoor multi-stereo images from current VHR satellites like WorldView-2 or Pléiades can be produced up to the ground sampling distance (GSD) of the sensors in the range of 50 cm to 1 m. From such DSMs the digital terrain model (DTM) representing the ground and also a so called nDEM (normalized digital elevation model) describing the height of objects above the ground can be derived. In parallel these sensors deliver multispectral imagery which can be used for a spectral classification of the imagery. Fusion of the multispectral classification and the nDEM allows a simple classification and detection of urban objects. In further processing steps these detected urban objects can be modeled and exported in a suitable description language like CityGML. In this work we present the pre-processing steps up to the classification and detection of the urban objects. The modeling is not part of this work. The pre-processing steps described here cover briefly the coregistration of the input images and the generation of the DSM. In more detail the improvement of the DSM, the extraction of the DTM and nDEM, the multispectral classification and the object detection and extraction are explained. The methods described are applied to two test regions from two satellites: First the center of Munich acquired by WorldView-2 and second the center of Melbourne acquired by Pléiades. From both acquisitions a stereo-pair from the panchromatic bands is used for creation of the DSM and the pan-sharpened multispectral images are used for spectral classification. Finally the quality of the detected urban objects is discussed.
منابع مشابه
Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملCartographic Data Extraction from Airborne Imagery by Hierarchical-based Morphologic Image Processing
This paper presents a comprehensive approach to effectively extract cartographic urban data from high resolution satellite imagery. It consists of a sequence of image processing techniques, for image segmentation, based on RGB band separation, analysis and preprocessing, followed by a morphological-based approach for data segmentation. The chosen image objects for this study are roof-tile build...
متن کاملComparing the Capability of Sentinel 2 and Landsat 8 Satellite Imagery in Land Use and Land Cover Mapping Using Pixel-based and Object-based Classification Methods
Introduction: Having accurate and up-to-date information on the status of land use and land cover change is a key point to protecting natural resources, sustainable agriculture management and urban development. Preparing the land cover and land use maps with traditional methods is usually time and cost consuming. Nowadays satellite imagery provides the possibility to prepare these maps in less ...
متن کاملDigital surface model extraction with high details using single high resolution satellite image and SRTM global DEM based on deep learning
The digital surface model (DSM) is an important product in the field of photogrammetry and remote sensing and has variety of applications in this field. Existed techniques require more than one image for DSM extraction and in this paper it is tried to investigate and analyze the probability of DSM extraction from a single satellite image. In this regard, an algorithm based on deep convolutional...
متن کاملFeature Extraction and Classification of High Resolution Satellite Images using GLCM and Back Propagation Technique
Remote sensing data provides much essential and critical information for monitoring many applications such as image fusion, change detection and land cover classification. This paper proposed about the classification and extraction of spatial features in urban areas for high resolution multispectral satellite image. Spectral information is the foundation of remotely sensed image classification....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015